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I. INTRODUCTION

In recent years, active and passive control of sound and vibration in aeroelastic

structures have received a great deal of attention due to many potential applications to

aerospace and other industries. There exists a great deal of research work done in this
area. Recent advances in the control of sound and vibration can be found in the several

conference proceedings. In this report we will summarize our research findings

supported by the NASA grant NAG- 1-1175.

The problems of active and passive control of sound and vibration has been

investigated by many researchers for a number of years. However, few of the articles are

concerned with the sound and vibration with flow-structure interaction. Experimental

and numerical studies on the coupling between panel vibration and acoustic radiation due

to flow excitation have been done by Maestrello and his associates at NASA/Langley

Research Center. Since the coupled system of nonlinear partial differential equations is

formidable, an analytical solution to the full problem seems impossible. For this reason,

we have to simplify the problem to that of the nonlinear panel vibration induced by a

uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on

this simplified model, we have been able to study the control and stabilization of the

nonlinear panel vibration, which have not been treated satisfactorily by other authors.

The vibration suppression will clearly reduce the sound radiation power from the panel.

The major research findings will be presented in the next three sections. In Section II we

shall describe our results on the boundary control of nonlinear panel vibration, with or
without flow excitation. Section III is concerned with active control of the vibration and

sound radiation from a nonlinear elastic panel. A detailed description of our work on the

parametric vibrational control of nonlinear elastic panel will be presented in Section IV.

This paper will be submitted to the Journal of Acoustic Society of America for

publication.

II. BOUNDARY CONTROL OF NONLINEAR PANEL VIBRATION

This work is concerned with the analytical study of a stabilization scheme to

suppress the large amplitude panel vibration by means of boundary damping: that is, by

introducing extraneous dissipative boundary conditions, an otherwise unstable system

will achieve its global and exponential stability. To be specific, we consider the panel

vibration to be governed by a nonlinear beam equation, with or without aerodynamic

forcing, subject to the clamped-free boundary conditions: that is, the left end of the panel

is clamped and the right end is free to move. Without any control, the compressive force

and the aerodynamic loading may be time-dependent. To stabilize the system, we apply



to thefreeedgeasetof boundarycontrols,whichconsistsof thecombinationof a
verticalforce,abendingmomentandatensileforce.By meansof the energymethodand
somemathematicalinequalities,theboundarystabilizationof themodelproblemfor a
vibratingnonlinearelasticpanelwastreatedanalytically.In general,thepanelis subject
to acompressivein-planeloadingcombinedwith anaerodynamicforcing. Without any
control,thepanelmaybuckleandwouldoscillatedueto flow inducedinstability. To
stabilizethepanel,asetof boundarycontrolswasintroducedasthecombinationof a
bendingmoment,averticalpoint forceandatensileforceappliedto thefreeedge.Two
cases,correspondingto theabsenceandthepresenceof anaerodynamicloading,were
treatedseparately.

Without theflow, this is thecaseof freevibration. Eventhoughtheenergyof the
uncontrolledsystemis conserved,with aninitial disturbance,the systemmaybuckleor
sustainpersistentlargeamplitudeoscillation. To rendertheenergyanexponentialdecay,
it wasfoundsufficientto applyatensileforce,if necessary,to reducethenet forceto a
subcriticalleveland,at thesametime,to introduceboundarydamping.Thedamping
mechanismconsistsof frictional forcesandtorque,which arelinearlyproportionalto the
transverseandtheangularvelocitiesof theright edge,respectively.Therefore,if the
compressiveforceis subcritical,thepassivecontrolin theform of boundarydamping
sufficesto stabilizethesystem.In ananalogoussituation,theresult seemsto be in
agreementwith theexperimentalevidencethatboundarydampingis effectivein
suppressingthepanelvibration._Inthepresenceof theunsteadyflow andacompressive
force,thepanelmaybuckleor flutter. If theflow velocity is oscillatoryanddecays
rapidly, it is possibleto stabilizethepanelby applyingatime-varyingtensileforce
togetherwith boundarydampingasbefore. However,for a slowly varyingcompressive
forceand,at thesametime,with asmallflow parameterthesystemcanbestabilizedas
in thefree-vibrationcase.Forthepurposeof illustration,severalnumericalexamples
wereprovided. In what follows,a fewcommentsarein order.

(1) Thepaperdealswith amodelproblemwhichmaynot berealisticin practice.
However,at leastqualitatively,theanalyticalresultssupporttheexperimental
evidencethatthepassivecontrolby boundarydampingiseffective in
suppressingpanelvibration.

(2) As in the stabilityanalysisof anordinarydifferentialequation,wesettheflow
pressureequalto zero,becauseoneis interestedonly in thestabilityof the
equilibriumsolutiondueto aninitial perturbation.In thepresenceof the
pressurefluctuation,thesystemvibrationmaybesuppressedby a distributed
control.Thiswill bediscussedin thenextsection.

(3) Thetheoreticalapproachbasedon theenergymethodandsomemathematical
inequalities,whenapplicable,is ratherpowerful. However,it certainlyhasits
limitations.In generaloneneedsboththeanalyticalandnumericaltechniques
to tacklethedifficult theflow-structureinteractionproblems.

Theresultsof thisresearchandrelatedwork aresummarizedin ourpapers[1]-[3].
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III. ACTIVE CONTROL OF SOUND AND VIBRATION

The main purpose of this work is to study, based on a nonlinear panel model, the

effectiveness of the active control to suppress the panel vibration and sound radiation

induced by the unsteady pressure fluctuation. The control consists of a distributed force

applied normally to one side of the wall. For simplicity, the flexible panel is assumed to

be hinged to the rigid plates at both ends. The coupled equations governing the nonlinear

panel vibration and acoustic radiation problem were given. For the optimality criterion, a

time-average energy or objective functional was introduced to measure the performance

in controlling the vibration and sound radiation. By applying the variational method, we

derived the optimality equation for the control force distribution which is coupled with

the controlled equations of motion. By using an eigenfunction expansion, the modal

control problem was formulated. The truncated modal control problem was solved

numerically by the shooting method for a two-point boundary value problem in the time

domain. The numerical results were obtained to demonstrate the effectiveness of active

control.

The main results of this research are summarized as follows.

(1) For the control of panel vibration, given the control objective function, the

optimal control can be found in the form of an external pressure applied to

the wall. We derived the partial differential equation for the optimal control

which is coupled to the equation of motion.

(2) For the given objective function, it is possible to derive the optimality system

for the control of sound radiation governed by the wave equation.

(3) In both cases, the optimality system consists of a coupled nonlinear boundary

value problem in space and time.

(4) In the case of truncated modal control, the optimality system yields a two-

point boundary value problem for a finite set of nonlinear ordinary

differential equations.

(5) The truncated optimality system for modal control was solved numerically.

The results show the following: (i) for linear panel vibration, the control is

highly effective and can almost completely eliminate the vibration over a

short time horizon. (ii) In contrast, a non-linear panel, in general, responses

less sensitively to the active control. The control is more effective at lower

vibration frequencies and with weak nonlinearity. For fixed nonlinearity, the
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effectivenessof controldiminishesasthefrequenciesincrease,and
eventuallythesystemlosescontrolcompletely.(iii) By applyingtheoptimal
vibrationcontrol,thesoundradiationintensitycanalsobe reduced
significantly.

Theresearchisrelatedto thenumericalstudiesperformedby Maestrelloand
someof hiscollaborators[1], [2]. Theresultsof ourwork canbe foundin the
publishedpaper[3].
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IV. VIBRATIONAL CONTROL OF NONLINEAR PANEL

1. Introduction.

The problem under consideration is the stabilization of the nonlinear panel oscillation

by an active control with a vibrational actuator. This work was motivated by the recent experimental

investigations of the second author (Maestrello [1], [2]), who demonstrated clearly that the

vibrational control could be an effective means of stabilizing the boundary-layer flow as well as the

panel vibration. This paper will offer a general method of vibrational control and its application to

the problem involving a nonlinear elastic panel excited by the periodic wall-pressure fluctuation in a
boundary-layer flow.

The general principle of active control, the vibrational control in particular, is to introduce an

action which affects a change in the behavior of a dynamical system in a desirable manner. In the

boundary layer transition control [1], the periodic heating and cooling of the wall induce a

parametric vibration of the fluid viscosity which, in turn, stabilizes the flow. In the case of panel

vibration [2], a properly added vibrational force with the same forcing frequency may result in
suppressing the subharmonic oscillations. (see section 2). The suppression of subharmonics, of

course, has the implication of controlling the chaotic motion.

The main idea of vibrational control stems from the fact that an inverted pendulum can be

stabilized at its upper equilibrium position when the lower suspension point executes a rapid vertical

vibration. (see e.g. [3]). Based on this idea, a general principle of vibrational control was proposed,

notably by Meerkov [4], to stabilize the equilibrium points of some finite-dimensional linear

systems. Application of this principle to reactor dynamics was done by Bellman et al [5]. By

contrast, in this paper, we will exte0d this control principle to stabilize the periodic motions of

infinite-dimensional systems, instead of equilibrium points in finite dimensions. In addition to the

high-frequency parametric vibrational control used in [4,5], a vibrational force with the same forcing
frequency will be required. Unlike the usual feedback of feed-forward control, the vibrational

control does not need accurate measurement of the system inputs and outputs and can be

implemented much more easily, especially for an infinite-dimensional system under consideration.

In this paper we consider the panel vibration which satisfies the initial boundary value problem

for the nonlinear beam equation [6]" •

f ,)

mO?w + cOtw - [Q + N(t)]O2w + DOnw = /xp(t,x), 0 < x < l

w(t,O) = w(t,l) = O,02_w(t,O) = OZw(t,l) = O,

w(O,x) = wo(x),O,w(O,x) = wl(x).

(1.1)

Here w denotes the transverse deflection; Ot, Ox... are the partial differentiations in t,x...; the

positive constants in c and D represent the unit mass, the damping coefficient and the bending

stiffness of the panel, respectively. The axial force Q is positive or negative according to the force

being tensile or compressive. The large panel deflection introduces an additional tension N(t) given
by

ilN(t) = b IO._w(t,x)lZdx, (1.2)
0

where b is an elastic constant. The forcing term/xp denotes the pressure difference across the panal
surfaces. The homogeneous boundary conditions mean that the panel is simply supported, and the

initial data w0 and wl are given. Suppose that, without any control, the periodic solution of equation

( 1.1) excited by the pressure/xp is unstable. Our problem is to stablize the panel oscillation by
applying an appropriate control in the form of vibrational forces added to the axial force and the



pressureAp.

The paper is organized as follows. To illustrate the basic ideas involved, in section 2, we

consider the control of the Duffing equation, for which the response characteristics to a

time-harmonic excitation is well known. The feasibility of the vibrational control can be discussed

geometrically by referring to the response curves. Since the applicability of vibrational control is not

limited to the structure dynamics, in section 3, a general method of vibrational control for a class of

nonlinear evolution equations is presented. For a given unstable periodic solution, the control

strategy is to shift the Liapunov exponent r of the vibrational equation to the negative half-line so

that the corresponding periodic solution becomes stable. This method is applied to the nonlinear

panel vibration problem satisfying equation (1.1). For weak nonlinearity, analytic results are

obtained by a perturbation analysis and the case of single-mode excitation is worked out in detail.

Finally, in section 5, some concluding remarks are made and other possible applications such as the

flow stabilization problem are mentioned.

2. Control of Duffing's Equation

Before dealing with the nonlinear beam equation (1.1), we consider the Duffing equation

9+/4v+ 6y+/3y 3 = Fcoscot, (2.1)

where the dot denotes the time derivative, the constants/1, 6, fl and F are assumed to be positive here,

and co > 0 is the forcing frequency. For small F, by perturbation analysis [7], it is known that

equation (2. I) has a periodic solution of the form

y = A cos(cot + 0) (2.2)

for some phase shift 0, where the amplitude A is related to the frequency a_ by the response equation

[8].

[ (coz - 6)A - 3 3 + ]Aco2A 2 -pA ]2 = F2 (2.3)

By varying the value ofF, equation (2.3) yields a family of response curves in the [.41- co plane.

Referring to Fig.l for F = Fo,Ft, the solid portion of the curve corresponds to the stable regime for

the periodic solution (2.2), while the dotted part of the curve (between two points of vertical

tangency) renders the solution unstable. With the frequency co fixed, point U on the F0-curve is

unstable, but, by changing F0 to F_, point U moves up to point S on the Fi-curve becoming a stable

point. Therefore, in this case by adding an in-phase force with the same frequency, an unstable

periodic motion can be stabilized. On the other hand, if the forcing amplitude F is large, the system

may exhibit a subharmonic response. For example, consider the case of subharmonic response with

frequency 3" Again, by a perturbation analysis, it is found that equation (2.1) has a subharmonic
solution of the form [8]:

y= Acos(cot+0,) + cos( -t +

where A,B and 01,02 are the corresponding amplitudes and phases, which satisfy some response

equations. For the subharmonics, the equation reads

1

co2: 9a+ _Z-y(B2 + 2f)+__ [ (-_)2 - p2] T (2.4)

with f= 9F/8. For F = Fo,F_ with F1 > F0 > 0, the response curves associated with (2.4) are given
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inFig.2.Notethatforco = coo, point P on tile F0-curve corresponds to a subharmonics with

amplitude r0. However, this subharmonics will disappear when F changes from F0 to Fi, since

co < too, and tot is the smallest frequency for the existence ofa subharmonics at F = F1. This may

explain qualitatively why a subharmonic vibration can be suppressed in the experimental

investigation [2] by an additive periodic force, which has the effect of changing the forcing
amplitude F.

In contrast with the additive vibrational control, the control can be applied parametrically. For

instance we regard the Duffing equation (2. I) as an approximate equation for an inverted pendulum

near the upper equilibrium position (v = 0), for which a = -6 < 0. Clearlyy = 0 is an unstable

equilibrium. If the suspension point vibrates at a high frequency v >> to, the equation (2.1) should
be replaced by [3]

+ la[3 + [p(vt) - 6]z + pz 3 = Fcostot, (2.5)

wherep(r) = p(r + 27r) is a periodic function. Without the controlp, a periodic motion about y = 0

is obviously unstable. However, by the method of averaging [3], equation (2.5) can be closely

approximated by the averaged equation (see section 4):

where< p >= 0 and

.9 + la)) + [< p2 > -6]y + ,By 3 -- Fcos tot, (2.6)

J'2'_p"(r)dr, forn = 1,2.<Pn >= 2"_ 0

Therefore, ifa =< p2 > -6 > 0, the periodic motion can now be stabilized as before.

The above examples show the possibility of stabilizing periodic motions by vibrational control.

As a generalization we consider the following control problem:

+ lad + az + flz 3 =f(2,cot) + h(_.,vt, z) (2.7)

wheref(2,r) = f(X,r + 2re) and h(_.,r,z) = h(&,r + 2Jr, z) are periodic functions; )_ is a control

parameter and h is a certain control function with h(O, vt,y) = 0 and co, v are the vibration

frequencies with v >> co. The uncontrolled case corresponds to 2 = 0 and h = 0. Of course the

equations (2.1) and (2.5) are special cases of(2.7). Suppose that z = q_0(t) is unstable periodic

solution of equation (2.7) when ,q.= 0 and h = 0. The control objective is to choose the control

parameter 2 and function h so that the corresponding periodic solution z = ¢p(_., t) with

q_(0,t) = _o0(t), becomes asymptotically stable. This means analytically that the variational equation

fory = (z - ¢p) from (2.7) has only exponentially decaying solutions. More precisely, if

r(A.,q_) = lim + ln_(t)l ,

then we must choose & and h such that r < 0. Obviously, unlike the optimal control, such a control,

if possible, is far from unique. The choice of 2 and h, though guided by physical feasibility, is mostly
up to the personal preference. In what follows, this control principle will be generalized to deal with

nonlinear partial differential equations.

3. Stabilization of Nonlinear Evolutions Equations

In the theoretical discussion, it is convenient to consider the partial differential equations of
interest as a nonlinear evolution equation of the form



f du _ B(u) + F(it, cot) + H(it, vt, u),
dt

u(O) = h,
(3.1)

where u(t) is a vector in some infinite-dimensional vector space Vwith initial state h. The operator

B is nonlinear, F()., r) = F(A., r + 2re) and H(it, r, u) = H(it, r + 2rr, u) are periodic with control

parameter it, being a scalar or vector. The control function H acts parametrically with rapid
oscillations so that v >> co. When it = O,H(O,r,u) = 0 and the system (3.1) is uncontrolled. We are

interested in stabilizing a periodic motion which is unstable at A, = 0. If the equilibrium solution u0

of(3.1) at Z = 0 is also unstable, we introduce a parametric vibrational control Hto stabilize it as in

the case of an inverted pendulum. The effect of Hcan be examined by the method of averaging [3].

By a change of time from t to a = t/e with _ = 1/v, the system (3.1) can be approximated by the
averaged equation

I du
dt

- B(u) + F(it, cot)+ [_(Z,u),

u(O) = h,
(3.2)

where

fDr H(Z, _', u)dr.= <H(it,vt, u)>= o (3.3)

The function H should be chosen so-that the equilibrium solution ul of the averaged equation (3.2)

becomes stable. Without control (it = 0), let u = gt0(t) be an unstable periodic solution of equation

(3.1) near u0. In addition to the parametric control H, we have modulated the forcing function

F(it, cot, ) by tuning the control parameter it so that the corresponding periodic motion satisfying the

averaged equation (3.2) is asymptotically stable. To this end let us consider the variational equation
of(3.2) for v = (u- _) :

f d__y_v= Bl(gt, v)+H,(it, gt, v),
dt

v(O) = g,
(3.4)

where

= B(v+ -B(q,),

H,(it, gt, v) = [Z(it, v+ gt)- Vl(Z, gt),

and g is an initial vector in V. Let [Ih l[ denote the magnitude (norm) of vector h. The control

objective is then to choose function H and parameter Z in such a way that the Liapunov exponent r is
negative,

for all g with tlgll
to give

1 lnllv(t)ll < O, (3.5)r(il,,H) = lim 7
1_¢0

< 6 with some 6 > 0. For small 6, the variational equation (3.4) can be linearized



f dv = A(2L, t)v,
dt

v(O) = g,
(3.6)

where A (_, t) is a linear operator defined by

A(_,t)v = {B_[_(_.,t)] + H,,[_,_(A.,t)}v, (3.7)

and Bu(v)- ,_B0,),Hu(2,v)- 6=(_.v)6v 6v are the linearized operator of B and H at v. Note that A(,_, t) is

periodic with the same period Tas that of v/. Now, if V is finite-dimensional and A(,_, t) is a matrix,

then, by the Floquet theory [7], the solution of equation (3.6) can be expressed as

v(t) = P(t)etRg, (3.8)

where P(t) = P(t + T) is a periodic matrix, and R is a constant matrix. The smallest real part of the

eigenvalues of R yields the Liapunov exponent r. Of course the representation (3.4) holds for any

finite-dimensional approximation of equation (3.4). Unfortunately, even the periodic function _ is

known, the analytical computation of the Liapunov exponent r through either (3.5) or (3.8) is

impossible without simplifying assumptions. For example, for small amplitude vibration, the

nonlinearity is weak so that the perturbation method and an eigenfunction expansion can be applied.

This procedure will be illustrated in the application to the panel vibration problem.

4. Vibrational Control of Elastic Panel

By redefining the constants in the nonlinear beam equation (1.1) under a vibrational control, it
yields

O?w+  a,w- (a + pllaxwllZ)Oxw+ ra4w = p(, ,cot, x) + h(,t,vt, x,w) (4.1)

where the initial-boundary conditions are omitted, and

,lOxwll2 = _'olSxwl2 dx (4.2)

p(Z, cot, x) =A p(cot, x) + (2hcot, x), (4.3)

pl and h are the additive and parametric control forces with frequencies co >> v. The physical

constants/_, fl, r are positive, while a is positive or negative depending on the axial force being

tensile or compressive. Without control, we assume that, at _ = 0,pl(0,x,r) = h(O, cr,x,w) = 0. To
be specific, we choose the parametric control to be a vibrational axial force of the form

where

with

Now let u t = w and u2 defined by

h( ,L vt, x, w ) "= q(_, vt)O_w,

= 8tq(2,vt)

(4.4)

10

< q >=< @ >= 0. (4.5)



ill = 1,12 "t- q(_, vt)OZul (4.6)

Then equations (4.1) and (4.6) yield

£f2 = --_]./(U2 "+- qO2u, ) - (a + flllOxu_ll2)alu, + ra2u_ } (4.7)

- q(cqZu2 - qc34ul) +p(2,cot, x).

We set

u=[ ul ]Z/2

and rewrite the equations (4.6) and (4.7) in the form (3.1):

dz___L= B(u) + F(X, cot) + H(X, cot, u), (4.8)
dt

where

B(u) = , (4.9)

-(uu2- (_ +/_11o_1',_II2)a_,,, + ra_., }

I 1F(_., cot) = 0
p(,_.,cot, o) ' (4.10)

and

H(2c'vt'u) = I qO2u' 1" (4.11)-tJqO_ul - q20_ul - qO_u2

In view of equations (4.5) and (4.9)-(4.1 1), by taking the time-average of equation (4.8) in _ = vt
with r = cot fixed, we get

du = B(u) + F(,?.,cot) + E]()c,u), (4.12)
dt

where

_ < q2 > 04Ul (4.13)

We note that the average equation (4.12) yields a scalar equation for w = ul as follows,

aZw + t_OZw- (a +/_llO_wll2)a2w + (r +< q2 >) = p(Z, cot, x), (4.14)

which shows that the high-frequency axial vibrational force q(2, vt) has the effect of increasing the

bending stiffness _' by the magnitude of< q2 > . Thus it stabilizes the system statically in general.
Now let

11



.... h

UO=_)Co(t)_I_[fol(t) lit_ 02 (t)

be an unstable periodic solution of equation (4.8) when ;t. = 0(H = 0), and let

u = v/(;t,t) = I _2(_,t)gtl(Z't)1

be a periodic solution of equation (4.14) with _'(0,t) = v/0(t). Define v = (u - _) so that v satisfies

the variational equation (3.4). Here it can be written in the form

dv -_ A(Z,t)v + fiG(2,t,v), (4.15)
dt

where A is a periodic linear operator and G is a nonlinear mapping defined as

and

fl = -/-Iv2 + (a +< q2 > +,Blla. tgtll2)cn v,+ 2B(O._,,Oxvt )O;w; - ),04v,

f2 = IIGv,ll20_u/_ + 2(O_l,O.,v, )O_, + Ila_v,ll20_vt,

with the inner product notation

iI(g,h) = og(x)h(x)dx.

When the nonlinear term G is dropped, equation (4.15) yields a generalized Hill's equation, a linear
partial differential equation with periodic coefficient:

dv _ A@,t)v. (4.16)
dt

For computational purposes, introduce a complete set oforthonormal functions {en}, which may be

the eigenfunctions associated with the linearized problem, or en(x) _ " "'_= sm-r-x,n = 1,2,... By

the expansion of the solutions of (4.12) and (4.15) into terms of e'ns as follows,

cO oO

u = _ un(t)e.; v = _ v.(t)e.,
n=l n=l

their coefficients satisfy the infinite systems of coupled ordinary differential equations of the form:

du_____,= Bi(ul .... ,un .... ) + Fi(X,t) + []i(X, ul...,u, .... ),
dt

dv_
- _aao(_,t)vj, i = 1,2,...,n,

dt "'"
n=l

where aij = (Aei,ej). The above systems can only be solved numerically for truncated systems of

12



low dimensions.As mentionedbefore,if thenonlineareffectisweak,wecanapplytheperturbation
analysisto approximatesolutionsanalytically.To thisendletusassumethatthedampingcoefficient
andtheforcingamplitudearesmall.By properscalingwith respectto asmallparametere > 0, the
equation(4.14)isrewrittenas

a2,w+ ez,a,w- (a + ePllGwllZ)Olw+ ra4_w= ep(Z,oot,x), (4.17)

for which we assume a > 0 and set < q2 >= 0 for simplicity. It remains to study the problem of

additive control. To illustrate the perturbation procedure, we will analyze the case of single-mode
excitation in some detail.

Let us consider the case of nth mode harmonic excitation in (4.17):

p(2,cot, x) = F(_.)sin--_--xcoscot, n = 1,2... (4.18)

where the control parameter ). modulates the forcing amplitude F and F0 = F(0) is the uncontrolled

amplitude. Then the equation (4.17) admits a single-mode solution

and zn satisfies the Duffing equation:

w = zn(t) sin -97g-x (4.19)

where

zn + W-t[]n + a,zn + a,6nz_ = aF(it) coscot, (4.20)

=-r )

The perturbation analysis of Duffing's equation has been discussed by many authors (see e.g. [3],
[7]). Here we adopt the method of averaging by letting

zn = Yl (t) sin cot +y2(t) cos cot, (4.21)

with

3)i sincot +._2 coscot = 0,

which are substituted into (4.20) to give

( 'j21 = "_EISny2- @/_nLVl2y2 "1- ]./(Dy I "t'- F0!. ) ],

(4.22)
-1y2= _[any,- @.tyl2y, +u_oy2],

with an = (co2 - an) and Lvl2 = y2 +y_. In the polar form, yl = rsin(p,y2 = rcosrp, this equation
becomes

_ = @R(r,_o,o)), (4.23)
_o @*(r,q,,o_),

where
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I R =/_o0r - Fsin _o(I) = S. 3 2 F-- T/3.r + 7-COSrp.
(4.24)

The solution (4.21) can be written as

z, = r(t) cos[o0t + rp(t)]. (4.25)

Therefore, for z, being periodic with frequency co, r and q_must be constants, which correspond to
the equilibrium point (7,_) of equation (4.23) satisfying

{ R(7, ,o0) = 0, (4.26)
= o.

By taking equation (4.24) into account, the above equation can be solved approximately to give

(any - 43--fln'f3) 2 +/.ty2o02 = F2(_), (4.27)

which, by a change of notation, agrees with the response relation (2.3). Therefore for each n, the

response curves are shown in Fig.1. Schematically, for n = 1,2, ..., the response curves are plotted m
Fig.3. Geometrically the control strategy is to steer an unstable point Un on the F0-curve to a stable

point Sn on the Fl-curve. Analytically the stability of a periodic solution is now reduced to that of an

equilibrium point, which can be checked more easily. To do so we form the first variational equation
of(4.23) about (7,_) =

(4.28)

where Rr " - "" ""= erR(r,q_,o0),Re = O_R(Y,'_,o0) and so on. Let r/(_.) denote an eigenvalue of the

coefficient matrix of (4.28). It can be readily verified that, by making use of (4.24) and (4.27), if

= >0, (4.29)

then Re r/(_) < 0 so that the steady state (Y,_) is stable. This is of course the stability condition for

the associated periodic solution. After computing the partial derivatives in (4.29), it yields

D(_) = (+]_n_'2 -- an) (9_n_'2 -- an) +/d2o0 2 > 0, (4.30)

with &, = (o02 - an). The above inequality determines the stability regime S in the 7 - co plane. In

view of(4.27), 7(;1.) depends on the control parameter it, which will take an unstable point into the
stable regime S. Note that from (4.30), we can get a simple sufficient stability condition:

3 _2
o02 < an + 7/3,r *, (4.31)

or

9 _2
o)2 > c_n+ -a-/_nr it.

The above inequalities give rise to stable (shaded) sub-regions as shown in Fig.4.
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In general all modes are excited by periodic pressure fluctuations. For instance, consider the

harmonic forcing (4.18) with a general spatially dependent amplitude

p(_, cot, x) = F(I, x) cos cot. (4.32)

If the axial load is compressive (a < 0) and slightly exceeds the lowest buckling load _'(_)4, the

parametric control q(vt) can still be used to stabilize the system statically by choosing < q2 >> ]al.

So we remain to consider equation (4.17) by assuming a > 0 there. To apply the above perturbation

procedure, we need to expand w in (4.17) and F in (4.32) into infinite series with respect to the

modal function e,(x) = _ sin -_-x, for n = 1,2 ...... The resulting infinite system of coupled

nonlinear differential equations for the coefficient functions can then be treated by a perturbation

analysis. Such a procedure developed previously for nonlinear wave equations by one of us (Chow

[9]) can be applied here. However unlike the single mode situation, simple stability conditions such

as (4.30) or (4.31) are no longer attainable. Though it is possible to study the stability regirhe

numerically after a finite-mode approximation, this has not yet been done.

5. Concluding Remarks.

In the paper we present a general method of vibrational control for a certain class of nonlinear

evolution equations with a particular reference to the nonlinear beam equation arising from the panel

structure dynamics. The control consists of a high frequency parametric vibration and the forcing

amplitude modulation. The high-frequency control is to affect a change in system parameter for
static stability, while the additive control of the excitation force, if needed, is to stabilize an unstable

periodic motion. In application to the panel structure, we show that, for a periodically excited panel
near a buckled state, a high frequency oscillatory axial force can keep the system in the state of

periodic motion, which can then be stabilized by an additive force modulation. The reason that we

only control the force amplitude, instead of both the amplitude and phase is that the additive control

is the most effective when it is in phase or out of phase with the excitation force. For a small forcing

amplitude, a perturbation technique can be used to reduce the stabilization of a periodic motion to

that of an equilibrium point, the latter of which is much simpler to analyze. In the case of a

single-modal excitation, an explicit stability condition is obtained. By a finite-modal approximation,
the stabilization problem can be studied numerically but has not yet been treated. The vibrational

control principle described in this paper can also applied to other problems such as the flow stability

control. Here the nonlinear evolution equation is given by the Navier-Stokes equation. For a slightly

unstable flow, the perturbation analysis by Keller and Kogelman [10] can be employed to deal with
the flow stabilization by vibrational control.
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